Non-extendability of Semilattice-valued Measures on Partially Ordered Sets

نویسنده

  • FRIEDRICH WEHRUNG
چکیده

For a poset P and a distributive 〈∨, 0〉-semilattice S, a S-valued poset measure on P is a map μ : P×P → S such that μ(x, z) ≤ μ(x, y)∨μ(y, z), and x ≤ y implies that μ(x, y) = 0, for all x, y, z ∈ P . In relation with congruence lattice representation problems, we consider the problem whether such a measure can be extended to a poset measure μ : P ×P → S, for a larger poset P , such that for all a, b ∈ S and all x ≤ y in P , μ(y, x) = a∨ b implies that there are a positive integer n and a decomposition x = z0 ≤ z1 ≤ · · · ≤ zn = y in P such that either μ(zi+1, zi) ≤ a or μ(zi+1, zi) ≤ b, for all i < n. In this note we prove that this is not possible as a rule, even in case the poset P we start with is a chain and S has size א1. The proof uses a “monotone refinement property” that holds in S provided S is either a lattice, or countable, or strongly distributive, but fails for our counterexample. This strongly contrasts with the analogue problem for distances on (discrete) sets, which is known to have a positive (and even functorial) solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed Point Theorems for Single Valued Mappings Satisfying the Ordered non-Expansive Conditions on Ultrametric and Non-Archimedean Normed Spaces

In this paper, some fixed point theorems for nonexpansive mappings in partially ordered spherically complete ultrametric spaces are proved. In addition, we investigate the existence of fixed points for nonexpansive mappings in partially ordered non-Archimedean normed spaces. Finally, we give some examples to discuss the assumptions and support our results.

متن کامل

Tripled partially ordered sets

In this paper, we introduce tripled partially ordered sets and monotone functions on tripled partiallyordered sets. Some basic properties on these new dened sets are studied and some examples forclarifying are given.

متن کامل

Interval fractional integrodifferential equations without singular kernel by fixed point in partially ordered sets

This work is devoted to the study of global solution for initial value problem of interval fractional integrodifferential equations involving Caputo-Fabrizio fractional derivative without singular kernel admitting only the existence of a lower solution or an upper solution. Our method is based on fixed point in partially ordered sets. In this study, we guaranty the existence of special kind of ...

متن کامل

Fixed point theorems for $alpha$-$psi$-contractive mappings in partially ordered sets and application to ordinary differential equations

‎In this paper‎, ‎we introduce $alpha$-$psi$-contractive mapping in partially ordered sets and construct fixed point theorems to solve a first-order ordinary differential equation by existence of its lower solution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008